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Coral reef carbonate accretion
rates track stable gradients in
seawater carbonate chemistry
across the U.S. Pacific Islands
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Charles W. Young2,3, Courtney S. Couch1,2,
Russell E. Brainard1,4 and Jennifer C. Samson1

1National Oceanic and Atmospheric Administration (NOAA) Pacific Islands Fisheries Science Center,
National Marine Fisheries Service, Honolulu, HI, United States, 2Cooperative Institute for Marine and
Atmospheric Research, University of Hawai’i, Honolulu, HI, United States, 3Pacific Islands Ocean
Observing System, University of Hawai’i, Honolulu, HI, United States, 4Red Sea Research Center,
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The U.S. Pacific Islands span a dramatic natural gradient in climate and

oceanographic conditions, and benthic community states vary significantly

across the region’s coral reefs. Here we leverage a decade of integrated

ecosystem monitoring data from American Samoa, the Mariana Archipelago,

the main and Northwestern Hawaiian Islands, and the U.S. Pacific Remote

Island Areas to evaluate coral reef community structure and reef processes

across a strong natural gradient in pH and aragonite saturation state (War). We

assess spatial patterns and temporal trends in carbonate chemistry measured in

situ at 37 islands and atolls between 2010 and 2019, and evaluate the

relationship between long-term mean War and benthic community cover and

composition (benthic cover, coral genera, coral morphology) and reef process

(net calcium carbonate accretion rates). We find that net carbonate accretion

rates demonstrate significant sensitivity to declining War, while most benthic

ecological metrics show fewer direct responses to lower-War conditions. These

results indicate that metrics of coral reef net carbonate accretion provide a

critical tool for monitoring the long-term impacts of ocean acidification that

may not be visible by assessing benthic cover and composition alone. The

perspectives gained from our long-term, in situ, and co-located coral reef

environmental and ecological data sets provide unique insights into effective

monitoring practices to identify potential for reef resilience to future ocean

acidification and inform effective ecosystem-based management strategies

under 21st century global change.
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Introduction

Increasing concentrations of atmospheric carbon dioxide

(CO2) are driving unprecedented shifts in global ocean carbon

systems (Hoegh-Guldberg et al., 2007). Absorption of excess

CO2 gas in ocean surface waters decreases seawater pH,

carbonate ion concentration (CO3
2-), and the saturation state

of the calcium carbonate mineral aragonite (War), a process

known as ocean acidification (Doney et al., 2009). In Pacific

open ocean waters, significant decreasing trends in surface

seawater pH have already been observed in the North Pacific

Subtropical Gyre (-0.0019 yr-1 to -0.0016 yr-1 at Station ALOHA,

Dore et al., 2009; Bates et al., 2014) and in the central equatorial

Pacific (-0.0026 to -0.0018 yr-1, Sutton et al., 2014) over the past

several decades. Dependent on future emissions scenarios, global

climate models predict an additional decline in seawater pH of

approximately 0.3 to 0.4 units by the end of the century

(Kwiatkowski et al., 2020).

The impacts of ocean acidification are projected to have wide

ranging effects across many marine ecosystems. Coral reefs are

largely defined by calcium carbonate structure and engineered

by organisms with known sensitivity to low pH and War;

therefore, they are likely to show major effects both in rates of

organismal carbonate production as well as bioerosion and

dissolution of existing carbonate structures (Kroeker et al.,

2010; Kroeker et al., 2013; Hoegh-Guldberg et al., 2017). Most

of our current understanding of coral reef ecosystem sensitivities

to ocean acidification is derived from laboratory manipulation

studies. Single-species and mesocosm perturbation experiments

can provide direct evidence of coral reef taxa responses to shifts

in carbonate chemistry in controlled environments, and

numerous studies have shown that calcification rates of some

(but not all) coral species, crustose coralline algae (CCA), and

other calcifying marine taxa decline significantly with decreasing

War (Kuffner et al., 2008; Kroeker et al., 2010; Chan and

Connolly, 2013; Kroeker et al., 2013; Manning et al., 2019).

Paired with observations of accelerating rates of calcium

carbonate dissolution and bioerosion under acidified

conditions (Wisshak et al., 2012; Schönberg et al., 2017), many

predictions for coral reef ecosystems under ocean acidification

therefore converge on a paradigm of future reef communities

that are algal-dominated, structurally simplified, and net eroding

(Hoegh-Guldberg et al., 2017).

However, laboratory studies cannot fully replicate dynamic

coral reef communities, where co-varying environmental,

ecological, biogeographic, and anthropogenic factors may

potentially magnify or mitigate the impacts of ocean acidification.

Instead, multiple studies over the past decade have leveraged unique

coral reef systems where natural processes produce sustained lower-

pH/War conditions, providing a glimpse over space of the possible

trajectory of reef ecosystem states through time (Manzello et al.,
Frontiers in Marine Science
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2008; Fabricius et al., 2011; Crook et al., 2012; Inoue et al., 2013;

Barkley et al., 2015; Enochs et al., 2015; Enochs et al., 2020). The

expanding global portfolio of these natural “ocean acidification

analog” sites has painted a more nuanced picture of coral reef

ecosystems under acidified conditions, as the negative responses to

decreasing War frequently observed in laboratory experiments are

not consistently realized on reefs as significant declines in the most

commonly monitored benthic health metrics, including cover and

diversity of hard corals, CCA, and other calcifying reef taxa. While

perhaps demonstrative of the reef-scale variability in community

sensitivity, this makes it challenging for long-term monitoring

programs and coral reef managers to select, track, and manage

the most appropriate indicators of ocean acidification impacts in

coral reef ecosystems.

The coral reefs of the U.S-affiliated Pacific Islands provide a

geographically expansive view of reef communities that exist across

a large spatial gradient in carbonate chemistry conditions. The

islands and atolls of the five U.S. Pacific Islands regions —

American Samoa, the Mariana Archipelago, the main Hawaiian

Islands, the Northwestern Hawaiian Islands, and the Pacific Remote

Island Areas — are widely scattered across the western and central

Pacific Ocean (~15° S to 30° N, ~140° E to 150° W) and thus

experience a diversity of climate, oceanographic, and

biogeochemical conditions. These range from the dynamic

upwelling zones of the central equatorial Pacific Remote Island

Areas to the more stable, oligotrophic Hawaiian and American

Samoan reefs within the North and South Pacific Subtropical Gyres

(Figure 1). Due in part to the range of climate and environmental

conditions experienced, benthic community states also vary from

coral-dominated to algal-dominated cover (Smith et al., 2016), in

the composition of coral genera, and in rates of net calcium

carbonate production (Vargas-Ángel et al., 2015). However,

spatial and temporal patterns in carbonate chemistry and

relationships with these benthic community metrics have, to date,

remained more poorly constrained.

Here we employ the past decade (2010–2019) of National

Oceanic and Atmospheric Administration (NOAA) integrated

coral reef ecosystem monitoring data in the U.S. Pacific Islands

to conduct a baseline analysis of acidification impacts on benthic

community structure and function. We examine spatial and

temporal patterns in carbonate chemistry measured in situ

across 37 U.S. Pacific Islands and then evaluate the impacts of

observed basin-scale War variability on co-located 1) benthic

cover, 2) genera and morphology of coral communities, and 3)

rates of net carbonate accretion (production of calcium

carbonate material). Our results allow us to identify the coral

reef ecosystem metrics that co-vary most strongly with gradients

in War, to begin to project Pacific coral reef ecosystem

sensitivities to future ocean acidification, and to evaluate the

most relevant reef response metrics for ongoing monitoring and

assessment of ocean acidification in reef environments.
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Methods

Survey dates and sampling design

The NOAA Pacific Islands Fisheries Science Center has

collected multi-disciplinary coral reef ecosystem monitoring data

at U.S.-affiliated Pacific islands and atolls since 2000, initially as part

of the NOAA Pacific Reef AssessmentMonitoring Program (Pacific

RAMP, 2000–2012) and currently under the NOAANational Coral

Reef Monitoring Program (NCRMP, 2013–present). Robust, co-

located monitoring of carbonate chemistry, benthic ecology, and

carbonate accretion rates was initiated in 2010; thus, data collected

between 2010 and 2019 were included in this study. Regions were

surveyed during the following years: American Samoa: 2010, 2012,

2015, 2018; Mariana Archipelago: 2011, 2014, 2017; main Hawaiian

Islands: 2010, 2013, 2016, 2019; Northwestern Hawaiian Islands:

2010, 2013, 2015, 2016, 2019; and the Pacific Remote Island Areas:

2010, 2012, 2015, 2016, 2017, 2018 (Wake only: 2011, 2014, 2017).

Access to study sites, particularly remote islands, is dependent on

ship availability, logistics, mission length, and suitable weather

conditions. As a result, not every island was surveyed and/or data

stream collected during a mission (see Supplementary Tables 1–11

for a full list of islands, sampling periods, and data

streams collected).

NCRMP’s climate and ecological monitoring design

integrates both permanent sites (surveyed during every

sampling period) and sites selected using a stratified-random
Frontiers in Marine Science 03
sampling design (surveyed only once). Permanent survey sites

were established at approximately 15 m depth on the fore reef,

with oceanographic and ecological instruments deployed on the

benthos to establish long-term, site-specific time series. Stratified

random sites for benthic ecological surveys were stratified based

on reef zone and depth (0–30 m), with more sites randomly

selected within strata that had larger hard bottom substrate area

relative to the total domain. Most permanent and stratified

random sites were located on the fore reef; however, sampling

and surveys were also conducted at sites in lagoon, back reef, and

protected reef slope environments where present. Full

descriptions of NCRMP development, survey design, methods,

and indicators are available in NOAA’s National Coral Reef

Monitoring Plans (NOAA Coral Program, 2014; NOAA Coral

Program, 2021) and Ocean Acidification Research Plans (Feely

et al., 2010; Jewett et al., 2020).
Carbon system chemistry

Discrete water samples were collected at both permanent

and stratified randomNCRMP survey sites following the Carbon

Dioxide Information Analysis Center Guide to Best Practices for

Ocean CO2 Measurements (Dickson et al., 2007). Coral reef-

associated water samples were collected during daylight hours

(08:00–16:00) using a 5-L Niskin bottle deployed from a small

boat or by divers at the surface (1 m depth) and at the benthos
FIGURE 1

Climatological aragonite saturation state (War) for the U.S. Pacific Islands region from the GLobal Ocean Data Analysis Project (GLODAP, 1973–2013)
v2 (Lauvset et al., 2016), shown with global climatological War (inset). Islands and atolls surveyed as part of NOAA’s Pacific RAMP/NCRMP are shown
as points, with shading corresponding to the average 2010–2019 mean in situ War. Modified and updated from Figure 6.3 in Jewett et al., 2020.
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(~15 m depth). Samples were stored in 500 mL borosilicate

bottles, where the sample bottle was allowed to overflow with

seawater for at least one full volume and ~1% sample volume

was removed to create a calibrated headspace. Samples were

immediately poisoned with 200 µL of saturated mercuric

chloride to inhibit biological activity and sample bottles sealed

with glass stoppers that were lightly covered in Apiezon-L

grease. Temperature, salinity, and pressure measurements were

recorded by a co-located CTD profiler (2010–2018: Seabird 19+,

2019: RBR Concerto3). A total of 1,788 nearshore carbonate

chemistry samples were collected between 2010 and 2019 (see

Supplementary Figure 1 and Supplementary Tables 1–5 for a

summary of water sample locations and years).

Seawater samples were stored indoors at room temperature

for the duration of each field mission and then shipped to the

NOAA Pacific Marine Environmental Laboratory in Seattle,

WA, for dissolved inorganic carbon (DIC) and total alkalinity

(TA) analysis. Coulometric titration for DIC was conducted

using two Single Operator Multiparameter Metabolic Analyzer

(SOMMA) systems, and two-stage, potentiometric, open-cell

titration for TA was conducted using an instrument custom-

built by the Dickson lab at Scripps Institution of Oceanography.

War was calculated from TA, DIC, temperature, salinity, and

pressure using the R package seacarb (Gattuso et al., 2020) with

the dissociation constants of Lueker et al. (2000). Concentrations

of total phosphate and total silicate were assumed to be zero.

Additional information on carbonate chemistry data collection

and analysis can be found at Barkley et al. (2021).
Benthic cover and community
composition

Stratified random benthic cover data were collected at each

island or atoll using standard NCRMP sampling protocols (see

Ayotte et al., 2015 and Winston et al., 2020 for full description of

survey methodology). In brief, 30 photographs per site were

collected at 1 m increments along a 30 m transect with a high-

resolution digital camera (Cannon PowerShot 1200, S110 and G9

X) with underwater housings from 1 m above the benthos. Benthic

data were extracted from photographs using fully manual human

annotation in Coral Point Count with Excel extensions, CPCe

(Kohler and Gill, 2006), from 2010–2014 and the web-based image

annotation tool, CoralNet (Beijbom et al., 2015), from 2015–2019.

For each image, the organism (genus/morphology for corals, genus/

functional group for algae) or type of substrate was identified

beneath each of ten randomly overlaid points. Points were pooled

across all imagery to generate a total of 300 annotations per site

(Lozada-Misa et al., 2017). A total of 6,136 surveys were conducted

across all islands between 2010 and 2019 and included in this

analysis (Supplementary Figure 2 and Supplementary Tables 6–10).
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Site-level percent cover was calculated at the functional level,

by coral morphology and by coral genera. The functional level

included total hard coral, CCA, encrusting macroalgae

(including calcifying Peyssonnelia sp.), Halimeda algae,

macroalgae, sediment, and turf. Coral morphologies were

categorized into branching, columnar, encrusting, foliose, free-

living, massive, and table groups. Coral genera were subset to the

five most common genera observed across the Pacific Islands

region (Acropora, Montipora, Pavona, Pocillopora, and Porites).

Stratified random surveys are not designed to be analyzed at the

site level; therefore, site-level data were averaged to calculate

mean cover across strata, then weighted by strata area, and

summed for each island and year.
Carbonate accretion rates

Carbonate accretion rates were estimated using Calcification

Accretion Units (CAUs) deployed at 220 permanent sites in 31

NCRMP islands between 2010 and 2019 (n = 1446 units; see

Supplementary Figure 3 and Supplementary Table 11 for details

on CAU deployment islands and years). Each CAU assembly

consists of two 10 cm × 10 cm PVC plates separated by a 1 cm

plastic spacer and fastened on a stainless steel rod (see Johnson

et al., 2022). CAUs were installed on stainless steel stakes

hammered into the reef substrate, secured with epoxy, and

positioned at approximately 10–20 cm above the benthos. Five

CAUs were installed per site, with typically 4–5 sites deployed

per island and year (range: 1–13 sites) at approximately 15 m

depth (range: 2.1–19.8 m depth). CAUs were recovered and

replaced after a 2–3 year period (e.g., CAUs deployed in 2010

were recovered in 2012) and stored frozen at -5°C until prepared

for processing.

Laboratory analysis was conducted at the NOAA Pacific

Islands Fisheries Science Center in Honolulu, HI, following

protocols outlined in Price et al. (2012) and Vargas-Ángel

et al. (2015). CAU plates were defrosted, disassembled, and

dried at 60°C until plate weight had stabilized, and then

decalcified in 5% HCl until all calcified material had fully

dissolved. Any remaining fleshy, non-calcified material was

then scraped onto filter paper, vacuum-filtered, dried, and

weighed. The weight of calcified material was calculated by

subtracting the weight of the PVC plate and fleshy material

from the total weight of the recovered unit and converted to an

accretion rate based on time in water. CAU data were averaged

to the site-level for statistical analysis. The cover and

composition of organisms occupying recovered CAUs were

not quantified as part of this study, although previous work

has shown that CCA represents about two-thirds of recruited

calcifying taxa, with small contributions from corals, algal crusts,

and carbonate sediment (<5% each; Vargas-Ángel et al., 2015).
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Data and statistical analysis

Carbonate chemistry and ecological data from five islands in

the Mariana Archipelago with ≤ 3 water samples collected across

all survey years were dropped from statistical analysis (Aguijan,

Alamagan, Farallón de Pájaros, Guguan, and Sarigan; n = 10

samples). In addition, extreme outliers in the carbonate

chemistry data (values more than three times the interquartile

range below the first quartile or above the third quartile for each

island and year; n = 26 samples) were removed. Variance

component analysis was then conducted using the VCA

package in R (Schuetzenmeister and Dufey, 2020) to attribute

observed spatial and temporal variance in annual War calculated

from discrete water samples to the explanatory variables of

depth, time of day (solar hour), region, island (nested within

region), sampling period, and their interaction terms. Sampling

period was represented by year groups (2010–2011, 2012–2014,

2015–2017, 2018–2019) rather than by numerical year.

Due to the relatively temporally sparse nature of NCRMP

surveys, single carbonate chemistry data points collected at each

site represent only a very brief snapshot of highly dynamic coral

reef biogeochemical environments. Therefore, to more robustly

characterize climatological carbonate chemistry as a driver that

could meaningfully impact benthic communities over longer

time periods, mean War values were calculated across all depths

for each island and year and compared to annual, island-level

means for benthic composition. Beta regression models were

constructed to evaluate the links between War and the functional

benthic cover categories (coral, CCA, turf, and macroalgae)

using the R package betareg (Cribari-Neto and Zeileis, 2010).

Cover data were converted to proportion data (constrained

between 0 and 1) and square-root transformed. To account for

mortality following the bleaching events that occurred at many

islands, predominantly between 2013 and 2017, and to explore

the contribution of potential outliers to statistical results,

separate beta regression models were constructed for all years

(2010–2019), the first sampling period for each island (2010–

2012), the last sampling period for each island (2016–2019), and

with and without the inclusion of the equatorial and near-

equatorial Pacific Remote Islands (Baker, Howland, Jarvis,

Kingman, and Palmyra). These upwelling-influenced islands

were considered as possible outliers due to the more extreme

mean values and inter-annual variability in carbonate chemistry,

temperature, salinity, and biogeochemical conditions that could

influence benthic community structure and function (Barkley

et al., 2018). Multivariate benthic composition, coral

morphology, and coral genera data were analyzed using

distance based redundancy analysis (db-RDA) on dissimilarity

matrices of square-root transformed data, and the significance of

the relationship War evaluated using permutation tests with 9999

permutations (R package vegan, Oksanen et al., 2020). Non-
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transformed and log-transformed 2010–2019 mean accretion

rate data were fit to generalized linear models with Gaussian

error distributions and a gamma error distribution with log link

function. The generalized linear model using log-transformed

accretion data and a Gaussian error distribution was found to

best describe the relationship between War and accretion rates

based on quantile-quantile plots of the model residuals.
Results

Spatial and temporal patterns in
carbonate chemistry

Carbonate chemistry showed significant spatial variability

across the five U.S. Pacific Island regions (Figures 1, 2 and

Supplementary Figures 4–6). Variance component analysis

revealed that the largest component of observed variance in

War was spatially driven, with 51.1% of observed variance

attributed to region and 18.6% of observed variance attributed

to island nested within region (Supplementary Table 12). The

highest War levels were consistently observed at the five islands

within American Samoa (2010–2019 island-mean range = 3.80–

4.12). Lower mean War values were observed in the Mariana

Archipelago (3.60–3.86) and main Hawaiian Islands (3.30–3.65),

andWar values did not deviate substantially from regional means

across islands within these archipelagoes. In the Northwestern

Hawaiian Islands, regional War values were relatively low (2.55–

3.80), with particularly low and variable War conditions

consistently observed at Lisianski (2.93 ± 0.10). The range in

carbonate chemistry conditions was also fairly large across

islands within the Pacific Remote Island Areas (3.14–3.90);

long-term War was lowest at Jarvis (3.33 ± 0.06) and Johnston

(3.44 ± 0.04), slightly higher at Baker (3.55 ± 0.11), Howland

(3.57 ± 0.10), Kingman (3.59 ± 0.08), and Palmyra (3.59 ± 0.07),

and highest at Wake (3.78 ± 0.02).

Regional spatial patterns in carbonate chemistry were stable

in most regions and islands through the time periods analyzed.

Inter-annual change (year group) explained none (0%) of the

variance across the full data set, with only small percentages of

variance attributed to inter-annual change within region

(interaction of year group and region, 4.6%), within island

(interaction of island within region, 7.4%), sample depth

(1.2%), and time of day (solar hour, 0.4%; Supplementary

Table 12). The notable exceptions to this large-scale temporal

stability were the equatorial islands of the Pacific Remote Island

Areas (Jarvis, Howland, and Baker), where significant inter-

annual swings in War were observed across sampling periods.

Particularly high War values were observed at Howland and

Baker in 2010 (3.90–3.91), and lower-War conditions occurred at

Howland, Baker, and Jarvis in 2017 (3.12–3.29).
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Benthic responses to War

Across the U.S. Pacific Islands, benthic cover and

composition varied substantially across regions and islands

(Supplementary Figures 7–10 and Supplementary Tables 6–

10). Turf algae was the dominant type of benthic cover at 28

of the 37 Pacific islands surveyed. Only four islands in American

Samoa (Swains, Ofu and Olosega, Tā‘u, and Tutuila) and five in

the Pacific Remote Island Areas (Jarvis, Howland, Baker,

Kingman, Palmyra) had greater percent cover of calcifiers than

of turf. These patterns were generally consistent across years.

Coral and CCA percent cover was highest in American Samoa

and lower across the Mariana Archipelago, main Hawaiian
Frontiers in Marine Science 06
Islands, and Northwestern Hawaiian Islands, although coral

cover was notably high at Lisianski and French Frigate Shoals.

In the Pacific Remote Island Areas, particularly low mean coral

cover (7.5 ± 0.5%) and high CCA cover (26.2 ± 1.1%) were

observed at Jarvis, as the 2010–2019 mean data include the cover

data collected both before and after the severe 2015–2016 coral

bleaching and mortality event (Barkley et al., 2018; Brainard

et al., 2018; Vargas-Ángel et al., 2019).

The Pacific-wide gradient in War was not meaningfully

correlated with any benthic cover component across all

sampling years (2010–2019) and all islands (Figure 3,

Supplementary Figure 11, and Supplementary Table 13).

Similar results were observed from analyses on the first (2010–
FIGURE 2

Aragonite saturation state (War) data for 37 U.S. Pacific islands and atolls collected during four sampling periods (2010–2011, 2012–2014, 2015–
2017, and 2018–2019). 2018–2019 data are not available for the Mariana Archipelago due to COVID-19 (“n.d.” = no data), and additional islands
missing data were not sampled during the specified sampling period. Islands that were surveyed more than once during the 2015–2017
sampling period (French Frigate Shoals and Lisianski: 2015 and 2016, Howland and Baker: 2015 and 2017, Jarvis: 2015, 2016, and 2017) are
shown with individual boxplots for each year. See Supplementary Figures 1–5 and Supplementary Tables 1–5 for a full description of sample
collection years and carbonate chemistry parameter data.
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2012) and last (2016–2019) sampling period for each island, with

the exception of a negative relationship between War and CCA

that became significant during the last sampling period. With the

equatorial and near-equatorial Pacific Remote Islands (Jarvis,

Howland, Baker, Kingman, and Palmyra) removed from

analysis, increasing War was linked with significant increases in

CCA cover and decreases in turf cover across all three sampling

windows and with decreasing macroalgae cover in the last

sampling period (2016–2019). Variability in War was also not

significantly related to multivariate benthic cover composition

(db-RDA, pseudo-F = 1.45, p = 0.18), coral morphology

(pseudo-F = 1.47, p = 0.20), or the composition of major coral

genera (pseudo-F = 1.99, p = 0.08; Figure 4).
War impacts on net carbonate
accretion rates

Reef carbonate accretion rates measured from CAU plates

varied across the U.S. Pacific Islands region and showed

significant sensitivity to spatial differences in carbonate chemistry

conditions (Supplementary Figures 12, 13). Carbonate accretion

rates increased exponentially with increasing War (GLM with log-

transformed response variable, estimate = 0.45, SE = 0.16, t = 2.89,
Frontiers in Marine Science 07
R2 = 0.20, p = 0.007; Figure 5), and the model fit improved with the

equatorial and near-equatorial Pacific Remote Island Areas (Jarvis,

Howland, Baker, Kingman, and Palmyra) removed as outliers

(estimate = 0.57, SE = 0.15, t = 3.93, R2 = 0.24, p < 0.0001). The

fastest accretion rates (2010–2019 mean ± standard error = 121.2 ±

8.9 mg cm-2 yr-1) were observed at the highestWar site (Rose, mean

War = 4.05 ± 0.01), and were consistently high across the other four

high-War islands of American Samoa (53.2–99.8 mg cm-2 yr-1). The

slowest accretion rates were observed in the Northwestern

Hawaiian Islands at Pearl and Hermes (15.6 ± 1.2 mg cm-2 yr-1;

War = 3.51 ± 0.03). Accretion rates were also very low at Lisianski

(24.2 ± 1.21 mg cm-2 yr-1), the island with lowest mean War (War =

2.96 ± 0.03). Accretion rates in the Mariana Archipelago (22.2–47.6

mg cm-2 yr-1) and main Hawaiian Islands (28.6–51.5 mg cm-2 yr-1)

were intermediate. Carbonate accretion patterns in the Pacific

Remote Island Areas were divided by latitude: the central

equatorial Pacific Remote Island Areas (Jarvis, Howland, Baker,

Kingman, and Palmyra) were among the highest-accreting islands

assessed in the Pacific Islands (55.7–71.5 mg cm-2 yr-1), while

carbonate accretion rates at the higher-latitude islands (Johnston:

19.1 ± 2.6 mg cm-2 yr-1 and Wake: 17.7 ± 2.4 mg cm-2 yr-1) were

among the lowest. CCA cover was also significantly correlated with

net carbonate accretion rates (Pearson’s r = 0.71, p < 0.001;

Supplementary Figure 14).
B

C D

A

FIGURE 3

Benthic community responses across a Pacific-wide gradient in War. Mean (± standard error) percent cover of (A) hard coral, (B) crustose
coralline algae (CCA), (C) turf, and (D) macroalgae plotted against mean (± standard error) War for each island (2010–2019 means). (B, C) Gray
dashed lines show non-significant beta regression model fit for all data, and black lines show significant (solid, p ≤ 0.05) and non-significant
(dashed, p > 0.05) beta regression model fit with equatorial and near-equatorial Pacific Remote Island Areas (triangles) removed; neither fit was
significant for (A, D).
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Discussion

A decade of co-located biogeochemical and benthic data

collected in the U.S. Pacific Islands reveal stable, regional-scale

spatial patterns in the mean carbonate chemistry of nearshore

coral reef environments. These data also show a strong gradient

in mean War (War = 2.96–4.05) that spans the high-War reefs of

American Samoa to the lower-War conditions present in the

Hawaiian Archipelago and Pacific Remote Island Areas. This

gradient in War is driven by spatial variability in temperature,

salinity, total alkalinity, and dissolved inorganic carbon, which

previous basin-scale analyses have shown are in turn influenced

by regional-scale differences in physical (precipitation/

evaporation, air-sea exchange of CO2), oceanographic

(upwelling, vertical mixing), and biological (photosynthesis/

respiration, calcification/dissolution) processes (Feely et al.,

2002; Kuchinke et al., 2014). Regional spatial patterns in War
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derived from in situ samples are broadly consistent with Pacific

climatology (e.g., the Global Ocean Data Analysis Project,

Lauvset et al., 2016), although nearshore War values are

generally depressed relative to offshore climatological estimates

due to coral reef biological activity (Figure 1).

Most of the samples and surveys conducted as part of this

study occurred on the fore reef; the steep bathymetric slopes of

most Pacific Islands (Gove et al., 2016) lead to shallow waters (0–

30 m) on the fore reef that are generally well-flushed, well-

mixed, and minimally variable during diurnal hours. However,

NCRMP water chemistry monitoring data highlight the reef

systems where localized oceanographic, hydrodynamic, and/or

biological processes uniquely impact nearshore carbonate

chemistry. For example, in the Northwestern Hawaiian

Islands, upwelling and internal waves drive low and variable

War, particularly at Pearl and Hermes (Vroom and Braun, 2010).

In addition, long residence times of seawater pooled on
B

C

A

FIGURE 4

Distance-based redundancy analysis (db-RDA) plots of relationship between War and (A) benthic percent cover, (B) coral morphology, and
(C) composition of the five most common Pacific Islands coral genera. Points show 2010–2019 mean benthic data for each island colored by
region, and gray arrows show the non-significant linear vectors of increasing War. (A) CCA, crustose coralline algae; EMA, encrusting
macroalgae; HAL, Halimeda algae; MA, macroalgae; SED, sediment.
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Lisianski’s shallow Neva Shoals likely magnify calcification and

respiration driven draw down of War, producing unusually low

War values within the Northwestern Hawaiian Islands (e.g.,

Shamberger et al., 2014; Silbiger et al., 2017). In the equatorial

Pacific Remote Island Areas of Jarvis, Howland, and Baker,

combined equatorial upwelling and topographic upwelling of the

Equatorial Undercurrent produce cool, low-War, and high-

nutrient nearshore environments (Gove et al., 2006). Inter-

annual variability in the El Niño Southern Oscillation (ENSO)

dynamically changes oceanographic conditions on these reefs,

shifting between low-War during La Niña periods when

upwelling of cool, low-War deeper water intensifies (e.g., 2017)

to higher-War during El Niño events (e.g., 2010) when upwelling

weakens and temperatures and War rise (Barkley et al., 2018).

Over the ten years and four sampling periods covered in this

analysis, only minimal variance in carbonate chemistry was

attributable to temporal factors. This demonstrates that the

strong spatial patterns in carbonate chemistry were relatively

stable inter-annually in most regions between 2010 and 2019,

with the exception of the ENSO-influenced Pacific Remote

Island Areas. NCRMP discrete water chemistry data —

collected at each island over a few days once every one to

three years — represent a snapshot of reef conditions during

daylight hours and can be used to estimate climatological

conditions at each island when averaged across multiple

sampling years. Critically, however, these data cannot be used

as robust evidence for or against a significant linear change in

War during this time period, such as a decline in War predicted

under ocean acidification. Longer, higher-resolution time series,

such as those from pCO2 moorings, are required to accurately

detect and resolve ocean acidification amidst the tidal, diel,

seasonal, and inter-annual variability that is present in highly

dynamic nearshore coral reef waters (Sutton et al., 2014; Sutton

et al., 2019). Currently, Moored Autonomous pCO2 (MAPCO2)

buoys are deployed at two NCRMP permanent sites in the U.S.
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Pacific (Kāne‘ohe Bay, O‘ahu, Hawai‘i and Fagatele Bay, Tutuila,

American Samoa), and time series data generated from these

moorings will provide important insights into the progression of

pH change in nearshore waters over the next several decades

(Terlouw et al., 2019).

Despite the gradient in War across the U.S. Pacific Islands,

most of the island-scale benthic cover metrics assessed in this

study were not strongly driven by spatial differences in War.

Island-scale benthic community composition, including cover of

reef calcifiers (corals and CCA) and algae, coral morphological

composition, and the composition of major coral genera were

not significantly related to mean War levels across all regions.

Removing the equatorial and near-equatorial Pacific Remote

Island Areas from analysis did result in significant relationships

between War and cover of CCA and turf algae, where CCA cover

increased and turf algae cover decreased in areas of lower War.

This may be indicative of a potential transition from higher CCA

cover at higher-War toward more abundant turf algae at lower-

War in some non-equatorial regions. Both coral and fleshy

macroalgae cover remained unresponsive to War across all

analyses considered, suggesting that the cover of these benthic

groups is less responsive to decreasing War.

Together, these observed responses provide some evidence

of a possible link between carbonate chemistry and benthic

composition. However, it is more likely that War is not a simple,

dominant driver of most benthic metrics over this range in War

and at the spatial and temporal scales analyzed here.

Furthermore, other environmental and ecological factors (e.g.,

temperature, productivity, light, wave exposure, anthropogenic

impacts) likely have a stronger influence — particularly in the

upwelling-influenced Pacific Remote Island Areas — in shaping

coral reef communities across the U.S. Pacific Islands region.

Considered across a basin-scale carbonate chemistry

gradient, the coral reefs of the U.S. Pacific Islands exhibit few

of the benthic community responses that are often reported
FIGURE 5

Mean (± standard error) in situ War plotted against mean net calcium carbonate accretion rates measured from Calcification Accretion Units
(CAUs) for 31 Pacific Islands from 2010–2019, shown with significant fitted exponential relationships between War and accretion rates for all
islands (gray line) and with equatorial and near-equatorial Pacific Remote Island Areas (triangles) removed (black line).
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across other natural acidification gradients. Although not

observed here, decreasing War has been linked to lower hard

coral cover in some (Manzello et al., 2008; Crook et al., 2012;

Inoue et al., 2013; Enochs et al., 2015), but not all (Fabricius

et al., 2011; Barkley et al., 2015; Enochs et al., 2020), locations.

Declines in CCA cover (Fabricius et al., 2011; Fabricius et al.,

2015; Smith et al., 2020), increasing macroalgae cover (Fabricius

et al., 2011; Enochs et al., 2015; Smith et al., 2020), and

decreasing abundance of complex coral morphologies

(Fabricius et al., 2011; Strahl et al., 2016) at low-War are also

common, but these benthic community trends are not

consistently present in the U.S. Pacific Islands during the

2010–2019 time period. Evidence of Porites coral tolerance of

lower-War levels (Fabricius et al., 2011; Crook et al., 2012;

Barkley et al., 2015; Enochs et al., 2015; Strahl et al., 2016) was

the only benthic community response variable that emerged as a

shared benthic community response across this and other

gradient studies. None of these systems are perfect analogs for

future ocean acidification, and differences in spatial and

temporal scales analyzed, divergent mechanisms for localized

acidification, co-variance with other environmental factors, and

variation in adaptive capacity likely confound a unified benthic

community signal to acidified conditions. Moreover, because the

range of the War gradient (War = 2.96–4.05) is still less extreme

than at most of these sites, it is also possible that current War

levels across the U.S. Pacific Islands have not yet exceeded the

threshold beyond which these major benthic community shifts

are expected to occur.

In contrast to the few significant changes in coral reef

community composition, net carbonate accretion rates

decreased exponentially over the range of mean War

experienced by benthic communities, showing the most

sensitivity of any ecosystem response we observed across the

U.S. Pacific Islands carbonate chemistry gradient. Net accretion

rates derived from CAUs largely reflect calcification rates of

CCA (Vargas-Ángel et al., 2015). Our field observations thus

support the results of many experimental studies that have

demonstrated that CCA is likely to be among the coral reef

taxa most susceptible to ocean acidification. This elevated

sensitivity is due to the calcified algae’s highly soluble, high

Mg-calcite skeletons that dissolve more rapidly under acidified

conditions than aragonitic coral skeletons, which can in turn

reduce productivity, calcification, recruitment, and abundance

(Kuffner et al., 2008; Diaz-Pulido et al., 2014; Ordoñez et al.,

2014; Fabricius et al., 2015; Dutra et al., 2016; Manning et al.,

2019). As CCA plays an important ecological role in both reef

cementation and coral recruitment (Price, 2010; Manning et al.,

2019), their vulnerability to ocean acidification will likely also

threaten future reef ecosystem persistence.

Carbonate accretion rate data derived from CAUs serve as a

proxy for rates of reef ecosystem net carbonate production.

Caution should be applied in scaling up these observations, as

calcifier recruits to CAU settlement plates may not reflect
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community structure in the adjacent benthos and reef

accretion rates can vary across depths and reef zones (Vargas-

Ángel et al., 2015; Johnson et al., 2022; Kench et al., 2022).

Nevertheless, reef-scale rates of net ecosystem calcification have

been shown to similarly track with War (DeCarlo et al., 2017),

demonstrating that net carbonate production may be a leading

indicator of coral reef community responses to ocean

acidification. Across the Pacific Islands, accretion rates were

generally higher at islands with higher cover of CCA. Yet, the

lower net accretion rates observed with decreasing War were not

directly reflected in the cover of reef calcifiers. Together, these

observations suggest that patterns in benthic cover and

composition potentially lag or are decoupled from trends in

reef carbonate accretion rates (Page et al., 2017).

The analysis presented here focuses specifically on carbonate

chemistry as a driver of coral reef benthic composition and

function. However, War is one of several environmental and

anthropogenic drivers, including sea surface temperature (and

thermal stress), productivity, and human population density,

that co-vary across the U.S. Pacific Islands region and impact

coral reef communities (Williams et al., 2015; Smith et al., 2016).

Given the lack of a strong relationship between carbonate

chemistry and most benthic response variables over the

carbonate chemistry gradient examined, it is likely that these

factors have a greater impact than War in shaping benthic

community composition than War alone, either independently

or in combination. This is especially likely in the equatorial

Pacific Remote Island Areas, where carbonate accretion rates are

higher than might be expected based solely on War levels and

where calcification rates are likely enhanced by the upwelling of

high-nutrient water (Gove et al., 2006; Silverman et al., 2007;

Johnson et al., 2020).

Bleaching events occurred in all U.S. Pacific Islands regions,

but not at all islands, between 2010 and 2019. Particularly severe

impacts were documented in the Pacific Remote Island Areas

(Vargas-Ángel et al., 2011; Barkley et al., 2018; Brainard et al.,

2018; Vargas-Ángel et al., 2019), Hawaiian Archipelago (Kramer

et al., 2016; Couch et al., 2017; Winston et al., 2022), Guam

(Raymundo et al., 2019), and the Northern Mariana Islands

(Carilli et al., 2020). The stable, insignificant relationship

between benthic cover and War during the past decade suggests

that these recent heat stress events have not yet influenced the

relationship between carbonate chemistry and the benthos.

However, this state is unlikely to persist. Increasingly frequent

and severe episodic marine heatwaves over the next few decades

are predicted to directly drive declines in both coral cover and

net carbonate production (Cornwall et al., 2021). While ocean

acidification may not ultimately be the dominant driver of future

reef states, it may act chronic stressor that reduces coral

calcification rates, calcifier productivity, and reef structural

integrity, thus amplifying reef sensitivity to warming and/or

hindering ecosystem recovery potential following bleaching

events (Klein et al., 2022).
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Overall, these results suggest that the most immediate and

significant impacts of ocean acidification may become evident

first in reef community processes (e.g., calcification and

accretion rates) rather than in benthic cover and composition.

Especially when considered at the island scale, these common

ecological metrics are not as clearly linked to shifts in carbonate

chemistry. Future targeted monitoring efforts should consider

prioritizing metrics of coral reef ecosystem sensitivity to ocean

acidification that include estimates of net community carbonate

production and erosion — using networks of CAUs,

hydrochemical approaches, and/or census-based carbonate

budgets (Courtney et al., 2016; Lange et al., 2020) — to more

robustly characterize reef function under changing carbonate

chemistry conditions. Tracking these more sensitive reef

community processes can help identify areas of vulnerability

or resilience in coral reef communities. In addition, strategic and

sustained monitoring of these parameters can provide early

warning of progressive ocean acidification impacts on coral

reefs, and thus increase the number of potential interventions

and time available to initiate proactive management prior to

major shifts in benthic community structure.
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